
Examiners’ Report: Final Honour School of Mathematics

Part C Trinity Term 2021

January 24, 2022

Part I

A. STATISTICS

• Numbers and percentages in each class

See Table 1, page 1.

• Numbers of vivas and effects of vivas on classes of result.
As in previous years there were no vivas conducted for the FHS of Mathematics Part C.

• Marking of scripts.
The dissertations and mini-projects were double marked. The remaining scripts were
all single marked according to a pre-agreed marking scheme which was very closely
adhered to. For details of the extensive checking process, see Part II, Section A1.

• Numbers taking each paper.
See Table 7 on page 11.

Table 1: Numbers in each class (new MSc classification)

Number Percentages %

2021 2021

Distinction 60 60
Merit 20 20
Pass 18 18
Fail 2 2

Total 100 100
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Table 2: Numbers in each class (pre-2021 classification)

Number Percentages %
2020 (2019) (2018) (2017) (2016) 2020 (2019) (2018) (2017) (2016)

I 63 (58) (53) (48) (44) 67.74 (57.43) (56.99) (57.14) (50.57)
II.1 30 (40) (26) (23) (31) 32.26 (39.6) (27.96) (27.38) (35.63)
II.2 0 (2) (13) (12) (9) 0 (1.98) (13.98) (14.29) (10.34)
III 0 (1) (1) (1) (3) 0 (0.99) (1.08) (1.19) (3.45)
F 0 (0) (0) (0) (0) 0 (0) (0) (0) (0)

Total 93 (101) (93) (84) (87) 100 (100) (100) (100) (100)

B. New examining methods and procedure in the 2020 examinations

In light of the ongoing Covid 19 pandemic, the University changed the examinations to
an open-book format and rolled out a new online examinations platform. An additional
30 minutes was added on to the exam duration to allow candidate the technical time to
download and submit their examination papers via Inspera.

C. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

The department intends to hold in person, partially open book exams in Trinity Term 2022:
students will be permitted to bring a couple of pages of notes into the exam, prepared by
the student, with adjustments in cases of disability.

D. Notice of examination conventions for candidates

The first notice to candidates was issued on 26th February 2021 and the second notice on
30th April 2021. These contain details of the examinations and assessments.

All notices and the examination conventions for 2021 examinations are on-line at
http://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments.

Part II

A1. General Comments on the Examination

The examiners would like to convey their grateful thanks for their help and cooperation to all
those who assisted with this year’s examination, either as assessors or in an administrative
capacity. The chairman would like to thank Barbara Galinska, Charlotte Turner-Smith,
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Waldemar Schlackow and the rest of the academic administration team for their support of
the Part C and OMMS examinations.

In addition the internal examiners would like to express their gratitude to Prof Richard
Jozsa and Prof James Robinson for carrying out their duties as external examiners in a
constructive and supportive way during the year, and for their valuable input at the final
examiners’ meetings.

Timetable

The examinations began on Monday 31st May and finished on Friday 18th June.

Mitigating Circumstances Notice to Examiners and other special circumstances

A subset of the examiners (the ‘Mitigating Circumstances Panel’) attended a pre-board
meeting to band the seriousness of the individual notices to examiners. The outcome of
this meeting was relayed to the Examiners at the final exam board, who gave careful regard
to each case, scrutinised the relevant candidates’ marks and agreed actions as appropriate.
See Section E for further details.

Setting and checking of papers and marks processing

Following established practice, the questions for each paper were initially set by the course
lecturer, with the lecturer of a related course involved as checker before the first draft of
the questions was presented to the examiners. The course lecturers also acted as assessors,
marking the questions on their course(s).

The internal examiners met in early January to consider the questions on Michaelmas
Term courses, and changes and corrections were agreed with the lecturers where necessary.
The revised questions were then sent to the external examiners. Feedback from external
examiners was given to examiners, and to the relevant assessor for each paper for a response.
The internal examiners met a second time late in Hilary Term to consider the external
examiners’ comments and assessor responses (and also Michaelmas Term course papers
submitted late). The cycle was repeated for the Hilary Term courses, with the examiners’
meetings in the Easter Vacation. Before questions were submitted to the Examination
Schools, setters were required to sign off a camera-ready copy of their questions.

Candidates accessed and downloaded their exam papers via the Inspera system at the
designated exam time. Exam responses were uploaded to Inspera and made available to
the Exam Board Administrator 25-33.5 hours after the exam paper had finished via One
Drive.

The process for Marking, marks processing and checking was adjusted accordingly to fit in
with the online exam responses. Assessors had a week to return the marks on the mark
sheets provided. A check-sum was also carried out to ensure that marks entered into the
database were correctly read and transposed from the mark sheets.

All scripts and completed mark sheets were returned, if not by the agreed due dates, then
at least in time for the script-checking process.
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A team of graduate checkers, under the supervision of Barbara Galinska, reviewed the mark
sheets for each paper of this examination, carefully cross checking against the mark scheme
to spot any unmarked questions or parts of questions, addition errors or wrongly recorded
marks. Also sub-totals for each part were checked against the mark scheme, noting correct
addition. In this way a number of errors were corrected, each change was approved by one
of the examiners who were present throughout the process.

Determination of University Standardised Marks

The Mathematics Teaching Committee issued each examination board with broad guidelines
on the proportion of candidates that might be expected in each class. This was based on
the average in each class over the last four years, together with recent historic data for Part
C, the MPLS Divisional averages, and the distribution of classifications achieved by the
same group of students at Part B.

The examiners followed established practice in determining the University standardised
marks (USMs) reported to candidates. This leads to classifications awarded at Part C
broadly reflecting the overall distribution of classifications which had been achieved the
previous year by the same students.

We outline the principles of the calibration method.

The Department’s algorithm to assign USMs in Part C was used in the same way as last
year for each unit assessed by means of a traditional written examination. Papers for which
USMs are directly assigned by the markers or provided by another board of examiners are
excluded from consideration. Calibration uses data on the Part B classification of candi-
dates in Mathematics and Mathematics & Statistics (Mathematics & Computer Science and
Mathematics & Philosophy students are excluded at this stage). Working with the data for
this population, numbers N1, N2 and N3 are first computed for each paper: N1, N2 and N3

are, respectively, the number of candidates taking the paper who achieved in Part B overall
average USMs in the ranges [70, 100], [60, 69] and [0, 59], respectively.

The algorithm converts raw marks to USMs for each paper separately (in each case, the
raw marks are initially out of 50, but are scaled to marks out of 100). For each paper,
the algorithm sets up a map R → U (R = raw, U = USM) which is piecewise linear. The
graph of the map consists of four line segments: by default these join the points (100, 100),
P1 = (C1, 72), P2 = (C2, 57), P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by
the requirement that the proportion of I and II.1 candidates in Part B, as given by N1 and
N2, is the same as the I and II.1 proportion of USMs achieved on the paper. The value of
C3 is set by the requirement that P2P3 continued would intersect the U axis at U0 = 10.
Here the default choice of corners is given by U -values of 72, 57 and 37 to avoid distorting
nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters provide the starting
point for the determination of USMs. The examiners have scope to make changes, usually
by adjusting the position of the corner points P1, P2, P3 by hand, so as to alter the map
raw→ USM, to remedy any perceived unfairness introduced by the algorithm, in particular
in cases where the number of candidates is small. They also have the option to introduce
additional corners.
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Table 3 on page 5 gives the final positions of the corners of the piecewise linear maps used
to determine USMs from raw marks. For each paper, P1, P2, P3 are the (possibly adjusted)
positions of the corners above, which together with the end points (100, 100) and (0, 0)
determine the piecewise linear map raw → USM. The entries N1, N2, N3 give the number
of incoming firsts, II.1s, and II.2s and below respectively from Part B for that paper, which
are used by the algorithm to determine the positions of P1, P2, P3.

Following customary practice, a preliminary, non-plenary, meeting of examiners was held
two days ahead of the plenary examiners’ meeting to assess the results produced by the
algorithm alongside the reports from assessors. The examiners reviewed each papers and
report, considered whether open book examination process affected candidates and reviewed
last year’s stats. The examiners discussed the preliminary scaling maps and the preliminary
class percentage figures. Adjustments were made to the default settings as appropriate,
paying particular attention to borderlines and to raw marks which were either very high or
very low. These revised USM maps provided the starting point for a review of the scalings,
paper by paper, by the full board of examiners.

Table 3: Position of corners of piecewise linear function

Paper P1 P2 P3 Additional corners N1 N2 N3

C1.1 20;50 30;60 37;70 50;100 2 0 0
C1.2 4.14;37 10;50 24;60 40;70 2 2 0
C1.3 8.73;37 17;57 30;70 50;100 8 5 0
C1.4 8;50 13;60 24;70 50;100 4 4 0
C2.1 24;50 30;60 37;70 50;100 13 5 0
C2.2 4.54;37 21;50 26;57 35;72 11 9 0
C2.3 9.48;37 23;60 29;70 50;100 7 2 0
C2.4 16;50 20;60 35.2;72 50;100 6 5 0
C2.5 9.10;37 20;57 28;72 50;100 5 2 0
C2.6 12.93;37 21;50 27;60 35;70 7 2 0
C2.7 18;50 24;60 32;70 50;100 17 11 0
C3.1 12;50 20;60 31;72 50;100 10 5 0
C3.2 5.51;37 9.6;57 36.6;72 50;100 4 5 0
C3.3 13;50 20.1;57 24;70 50;100 6 1 0
C3.4 8.56;37 25;50 30;60 40.4;72 8 4 0
C3.5 8.85;37 21;57 33.4;72 50;100 5 3 0
C3.7 7.07;37 18;50 36;70 50;100 11 6 0
C3.8 6;30 18;50 25;60 41;72 10 10 0
C3.10 13;50 21;60 32;70 50;100 3 3 0
C3.11 19;61 25;70 50;100 - 3 0 0
C4.1 12.52;37 17;55 30;70 50;100 7 2 0
C4.3 15;50 27;60 35;70 50;100 9 3 0
C4.6 6.43;37 20;50 30;60 35;70 7 2 0
C4.8 15;50 23;60 30;70 50;100 1 0 0
C4.9 22;50 27;60 32;70 50;100 2 1 0
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Paper P1 P2 P3 Additional corners N1 N2 N3

C5.1 13.79;37 28;60 39;72 50;100 7 6 1
C5.2 5.80;37 22;60 29.6;72 50;100 9 6 1
C5.3 15.80;37 30;60 40;70 50;100 2 3 0
C5.5 10.40;37 20;50 29;60 37.6;72 14 15 3
C5.6 14;50 30;60 42;70 50;100 4 6 1
C5.7 8.85;37 25;60 30;70 50;100 8 9 1
C5.9 20;50 28;60 36;70 50;100 5 2 1
C5.11 13.39;37 23.3;57 25;60 36.8;72 13 12 2
C5.12 13.79;37 35;70 50;100 - 10 14 1
C6.1 7.41;37 21;60 32;70 50;100 7 15 4
C6.2 13.16;37 22;50 27;60 33.4;72 4 11 1
C6.3 11.78;37 20.5;57 34;70 50;100 1 5 1
C6.4 21;50 30;60 35;70 50;100 6 4 0
C7.4 22;50 35;60 39;70 50;100 2 2 1
C7.5 15;50 22;60 32;70 50;100 1 1 0
C7.6 17;50 23;60 30;70 50;100 1 0 0
C7.7 24;50 29;60 36;70 50;100 2 4 2
C8.1 25;50 32;60 42;70 50;100 7 9 0
C8.2 17;50 32.6;72 50;100 - 5 5 0
C8.3 14;50 30;60 35;70 50;100 10 12 1
C8.4 12;50 18;66 24;72 50;100 7 7 1
C8.6 14.88;37 25.9;57 36.4;72 50;100 3 3 0
SC1 9.54;37 30;60 38;70 50;100 13 13 1
SC2 13.961;37 24.3;57 37.8;72 50;100 14 16 4
SC4 11.83;37 25;60 32.6;72 50;100 10 12 2
SC5 20;40 35;60 45;70 50;100 9 10 2
SC6 13.96;37 20;50 35;70 50;100 0 4 3
SC7 15;40 25;60 34;70 50;100 5 4 1
SC9 0;0 7.87;37 22;60 30.2;72 6 7 0
SC10 6.03;37 25;60 33;72 50;100 7 4 1
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A2. Issues to do with the Inspera computer system

It was decided at the University level that mathematics online, open book exams would
happen through the Inspera computer system. This was run by an IT team at the University
level, and Mathematical Institute staff had no control over it.

The Inspera system has some features that are unsuitable for the needs of mathematics
exams. The first issue we discuss was obvious to us from the outset, and Mathematical
Institute staff protested about it early on, but no changes were made.

(a) Candidates locked out of Inspera immediately at end of exam

The way the system actually worked: If candidates go past their submission deadline,
the Inspera system locks them out, and they are unable to submit their script through
Inspera. So they then had to e-mail their script to Maths Institute staff.

How we wanted the system to work: It would have been immensely helpful if the
Inspera system could have accepted late submissions, flag them as late, and record the
submission time. This does not sound like a difficult feature to program in.

It seems that Inspera is designed primarily around the idea that candidates type their
responses into Inspera continuously during the exam, and at the end of the exam the
system closes and no more input is accepted.

Mathematics undergraduates will overwhelmingly want to write their scripts by hand, usu-
ally on paper, to accommodate diagrams, equations, and mathematical symbols not on
QWERTY keyboards; to spend any spare time correcting solutions or solving remaining
parts, until the last minute; and to scan and upload their scripts only at the very end.

Predictably, a significant number of candidates went past their submission deadline by a
few minutes because of last minute problems with bad wifi / problems scanning scripts /
phone or computer battery problems / the Inspera site itself misbehaving, and were locked
out of Inspera. Processing these late submissions and the MCEs submitted by candidates
took up a lot of administrative time, and caused the candidates anxiety.

When they were locked out of Inspera, some candidates contacted their college, waited for
a reply, and only e-mailed us their script 1-2 hours later. We have no way to know whether
they did further work on their answers in that time. The examiners chose not to penalize
any candidate with a reasonable excuse (easy to come up with) for late submission.

Recommendations for future online exams: please can the Inspera/other system
accept late submissions and record how late they are, this would be so much easier.

Also, please could the penalties for a short time overrun be mild, not draconian, e.g. deduct
1 USM for 0-5 minutes overrun, and we should announce our intention of applying these mild
penalties even to people with plausible excuses, giving them an incentive to go somewhere
with good wifi, and charge their phones in advance.

The trouble with draconian penalties for minor infractions (e.g. submitting 6 minutes late =
fail paper, hence also final class capped at pass, as in this year’s Examination Conventions)
is that the examiners are very unwilling to apply them, so we waive them. At the same
time, we guess some short overruns may happen like this: a student calculates that they
can scan and upload their script in 20 minutes, so they take 10 minutes of the 30 minutes
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“technical time” to work on their script. Then some minor problem occurs, as in the list
above, and scanning and uploading takes 26 minutes.

(b) Wrong exam papers made available on Inspera

For two exams, C2.6 and C6.1, the Inspera IT team initially made the wrong exam paper
available for download. For C2.6, only the cover page was available, without the questions.
For C6.1, they actually made a different exam available, C6.2, which was to be sat 4 days
later. This compromised the security of C6.2, so as instructed by the proctors, we had to set
and check an entire new C6.2 exam in 3 days. The examiners are very grateful to the C6.2
assessor, who sacrificed much of her weekend time with her family to make this happen.

Five candidates submitted MCEs saying that downloading the wrong exam had caused
them panic attacks or similar during the exam.

The exams were correct when submitted to the Exam Schools, and we believe the mistakes
were introduced by the Inspera IT team. We appreciate that Maths exams are unlikely to
be comprehensible to a non-specialist. However, even very basic error checks might have
uncovered the fact that an exam paper had no questions, or had a different paper number
and completely different title. Producing a cover page only is presumably the result of
running LaTeX on the paper with only half the source files. This would have spat out a list
of fatal errors about missing files, it is a pity these were not acted on.

(c) Response of Inspera IT team to making wrong exam available

How the Inspera IT team responded to helpline calls saying that the C2.6 and
C6.1 exam papers were wrong: they e-mailed the correct exam paper, simultaneously,
to all students taking the paper, whether or not the students had started the exam and
downloaded the incorrect paper. For those that had started the paper, they also reset their
clock to a later starting time the Inspera team chose.

This had several adverse consequences:

• We have students in multiple time zones, who were expecting to start their exams
up to 17 hours later than the standard UK start time of 9.30am. So a number
of students were e-mailed the exam up to 16-17 hours before they actually started.
If they opened the e-mail, they could have spent much longer on their solutions.
Comparing ‘early’ candidates’ USMs with their performance on other papers suggests
that some candidates benefitted substantially from this.

• Even students in the UK can choose their start time in a 24 hour window. So candi-
dates that had not started the exam before the paper was e-mailed could have chosen
to delay their start time and spend extra time on the exam. We have no evidence any
candidates did this, but it was possible.

• Some candidates who had their clocks restarted by the Inspera team submitted MCEs
to say that they did not open the e-mail until after their clock had restarted, and so
they lost time to do the exam.
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The examiners were careful to choose the scaling maps so that candidates who did not receive
the exam early were not disadvantaged (that is, we guarded against the possibility that
‘early’ candidates may have received higher marks, increasing the average score, resulting
in the algorithm delivering a lower scaling function, decreasing the USMs of non-‘early’
candidates). However, we did not penalize in any way the candidates who were e-mailed
the exam before they started it, and these very well may have gained an advantage.

How we would have preferred the Inspera IT team to respond: it would have been
much better not to e-mail the paper to all candidates, but to reset the Inspera system with
the correct paper, and allow all candidates to start the exam and download the paper at a
time of their choosing within a 24 hour window, and e-mail all candidates to tell them this.

We do not know why the Inspera team did not do this. But as it is so obvious, we guess
that some technical feature of the Inspera system made it impractical. If so, we recommend
that the appropriate functionality should be added to the Inspera system.

(d) General comments

The issues discussed above had significant negative consequences for the fairness of the
exams this year, and for the mental well being of students and staff, and caused a lot of
unnecessary extra work for Maths Institute staff during a very busy time.

If the system (or a similar one) is to be used again in a future year, we recommend that the
functionality of the system be reviewed well in advance to ensure that it is fit for purpose,
bearing in mind the particular specialist needs of subjects such as mathematics.

We also recommend that procedures within the Inspera IT department for handling papers
to avoid introducing errors, and to detect such errors, and for what to do if a problem arises
with a paper once it is released to students, should all be carefully reviewed.
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B. Equality and Diversity issues and breakdown of the results by gender

Table 5: Breakdown of results by gender

Class Number

2021
Female Male Total

Distinction 15 45 60
Merit 8 12 20
Pass 5 13 18
Fail 1 1 2

Total 29 71 100

Class Percentage

2021
Female Male Total

Distinction 51.72 63.38 60
Merit 27.59 16.9 20
Pass 17.24 18.31 18
Fail 3.45 1.41 2

Total 100 100 100

Table 6: Breakdown of results by gender

Class Number

2020 2019 2018
Female Male Total Female Male Total Female Male Total

I 16 47 63 8 50 58 6 47 53
II.1 4 26 30 9 31 40 7 19 26
II.2 0 0 0 0 2 2 3 10 13
III 0 0 0 0 1 1 1 0 1
F 0 0 0 0 0 0 0 0 0

Total 20 73 93 17 84 101 17 76 93

Class Percentage

2020 2019 2018
Female Male Total Female Male Total Female Male Total

I 80 64.38 72.19 47.06 59.52 57.43 35.29 61.84 56.99
II.1 20 35.62 27.81 52.94 36.9 39.6 41.18 25 27.96
II.2 0 0 0 0 2.38 1.98 17.65 13.16 13.98
III 0 0 0 0 1.19 0.99 5.88 0 1.08
F 0 0 0 0 0 0 0 0 0

Total 100 100 100 100 100 100 100 100 100
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C. Detailed numbers on candidates’ performance in each part of the exam

Data for papers with fewer than six candidates are not included.

Table 7: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

C1.1 - - - - -
C1.2 - - - - -
C1.3 13 28.54 9.25 70.38 12.08
C1.4 8 21.62 8.8 66.5 13.19
C2.1 18 35.28 9.07 68.94 17.49
C2.2 20 31.15 8.84 66.7 13.97
C2.3 9 31.33 9.67 72.67 14.87
C2.4 11 30.18 8.74 69 10.31
C2.5 7 24.29 6.26 64.43 10.86
C2.6 9 38.22 8.66 78.33 14.48
C2.7 28 30.61 7.67 68.36 12.78
C3.1 15 31.13 11.63 72.93 17.72
C3.2 9 31 8.83 70.44 8.53
C3.3 7 27.86 4.1 73.43 6.73
C3.4 12 37.75 8.78 72.5 15.81
C3.5 8 30.12 7.45 68.38 9.97
C3.7 17 36.76 8.62 75 13.21
C3.8 19 33.16 12.28 69.11 18.2
C3.10 6 25.5 18.01 56 35.19
C3.11 - - - - -
C4.1 8 32.62 7.07 74.75 9.79
C4.3 12 33.17 6.85 69.25 9.31
C4.6 9 35.11 9.25 71.78 15.18
C4.8 - - - - -
C4.9 - - - - -
C5.1 14 34.36 9.25 68.71 14.71
C5.2 16 26.25 6.58 66.75 9.71
C5.3 - - - - -
C5.5 31 33.52 7.54 67.71 11.59
C5.6 11 38.64 10.22 73.27 15.75
C5.7 18 29.72 5.99 68.94 9.97
C5.9 8 36.88 8.92 74.88 15.46
C5.11 25 33.84 6.65 70.48 9.75
C5.12 24 33.88 5.47 69.12 9.43
C6.1 17 26.59 9.09 66.24 12.27
C6.2 15 30.07 3.37 65.67 6.31
C6.3 - - - - -
C6.4 10 34.2 6.66 69.3 12
C7.4 - - - - -
C7.5 - - - - -
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C7.6 - - - - -
C7.7 6 36.5 6.09 72.67 11.04
C8.1 12 40.5 5.87 72.25 10.61
C8.2 8 27.5 7.27 65.12 10.87
C8.3 21 31.33 11.11 67.33 16.49
C8.4 15 21.73 7.6 68.27 9.83
C8.6 - - - - -
SC1 14 37.93 4.25 72.07 8.15
SC2 10 35.9 5.59 71.4 9.28
SC4 - - - - -
SC5 - - - - -
SC7 - - - - -
SC9 8 30.25 6.8 71.75 9.9
SC10 - - - - -
C3.9 6 - - 72.67 16.74
C5.4 18 - - 72.67 11.44
C6.5 12 - - 69.58 5.99
CCD 95 - - 73.72 8.7
COD - - - - -

The tables that follow give the question statistics for each paper for Mathematics candi-
dates. Data for papers with fewer than six candidates are not included.

Paper C1.3: Analytic Topology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.83 13.83 6.40 6 0
Q2 14.4 14.4 5.89 10 0
Q3 14.4 14.4 5.02 10 0

Paper C1.4: Axiomatic Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.63 11.63 5.21 8 0
Q2 11.50 11.50 4.12 4 0
Q3 11.33 11.33 2.52 3 0

Paper C2.1: Lie Algebras

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.83 20.83 4.553 18 0
Q2 13.08 13.08 5.33 13 0
Q3 18 18 8.49 5 0
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Paper C2.2: Homological Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.15 18.15 3.41 20 0
Q2 14 14 5.94 12 0
Q3 13.14 13.14 4.81 7 0

Paper C2.3: Representation Theory of Semisimple Lie Algebras

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.5 18.5 4.95 2 0
Q2 14 14 6.63 7 0
Q3 16.33 16.33 5.98 9 0

Paper C2.4: Infinite Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.6 16.6 5.72 10 0
Q2 13.67 13.67 4.09 9 0
Q3 14.33 14.33 2.31 3 0

Paper C2.5: Non-Commutative Rings

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10.43 10.43 4.12 7 0
Q2 13.2 13.2 2.17 5 0
Q3 15.5 15.5 4.95 2 0

Paper C2.6: Introduction to Schemes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.38 20.38 4.31 8 0
Q2 16.67 16.67 5.77 3 0
Q3 18.71 18.71 5.09 7 0

Paper C2.7: Category Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.41 15.41 3.92 27 0
Q2 14.92 15.4 5.43 25 1
Q3 14 14 1.83 4 0
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Paper C3.1: Algebraic Topology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.53 15.53 7.17 15 0
Q2 14.2 14.2 5.72 5 0
Q3 16.3 16.3 6.68 10 0

Paper C3.2: Geometric Group Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.33 17.33 4.64 9 0
Q2 14.63 14.63 3.81 8 0
Q3 6 6 - 1 0

Paper C3.3: Differentiable Manifolds

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.14 15.14 3.34 7 0
Q2 12.83 12.83 3.76 6 0
Q3 12 12 - 1 0

Paper C3.4: Algebraic Geometry

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18 18 5.50 11 0
Q2 17 18.57 8.75 7 1
Q3 20.83 20.83 3.66 6 0

Paper C3.5: Lie Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.63 17.63 3.66 8 0
Q2 10 10 6.93 3 0
Q3 14 14 2 5 0

Paper C3.7: Elliptic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.33 19.33 5.20 9 0
Q2 17.82 17.82 3.63 11 0
Q3 18.22 18.22 5.75 14 0
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Paper C3.8: Analytic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.38 15.38 6.08 16 0
Q2 20.2 20.2 5.73 10 0
Q3 15.17 15.17 7.41 12 0

Paper C3.10: Additive and Combinatorial Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.83 13.83 9.56 6 0
Q2 12 12 7.448 4 0
Q3 22 22 - 1 0

Paper C4.1: Further Functional Analysis

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.6 16.6 4.67 5 0
Q2 15.75 15.75 2.5 4 0
Q3 16.43 16.43 5.53 7 0

Paper C4.3: Functional Analytical Methods for PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.67 16.67 2.67 12 0
Q2 18.57 18.57 4.04 7 0
Q3 13.6 13.6 5.86 5 0

Paper C4.6: Fixed Point Methods for Nonlinear PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17 17 3.58 6 0
Q2 20.33 20.33 3.204 6 0
Q3 18.4 18.4 2.80 5 0

Paper C5.1: Solid Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18 18 3.82 14 0
Q2 15.85 15.85 5.76 13 0
Q3 23 23 - 1 0
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Paper C5.2: Elasticity and Plasticity

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.5 11.5 3.68 12 0
Q2 11.92 12.73 4.70 11 1
Q3 15.78 15.78 3.38 9 0

Paper C5.5: Perturbation Methods

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.2 16.2 4.21 25 0
Q2 13.91 16 7.67 8 3
Q3 17.45 17.45 4.10 29 0

Paper C5.6: Applied Complex Variables

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.9 18.9 5.0 10 0
Q2 11.33 11.33 6.35 3 0
Q3 22.44 22.44 3.32 9 0

Paper C5.7: Topics in Fluid Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.44 11.44 2.94 16 0
Q2 17.17 17.17 4.26 12 0
Q3 18.25 18.25 3.85 8 0

Paper C5.9: Mathematical Mechanical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.2 18.2 4.44 5 0
Q2 17.86 17.86 4.63 7 0
Q3 19.75 19.75 5.38 4 0

Paper C5.11: Mathematical Geoscience

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.75 16.75 4.18 12 0
Q2 16.37 16.37 4.46 19 0
Q3 17.58 17.58 3.39 19 0
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Paper C5.12: Mathematical Physiology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17 17 3.45 19 0
Q2 17.14 17.14 3.18 14 0
Q3 16.67 16.67 4.86 15 0

Paper C6.1: Numerical Linear Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.86 13.86 5.29 14 0
Q2 13 13 5.78 8 0
Q3 12.83 12.83 4.97 12 0

Paper C6.2: Continuous Optimization

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.58 14.58 1.56 12 0
Q2 15.78 15.78 4.02 9 0
Q3 14.89 14.89 2.98 9 0

Paper C6.4: Finite Element Methods for Partial Differential Equations

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.89 17.89 5.18 9 0
Q2 16.9 16.9 3.11 10 0
Q3 12 12 - 1 0

Paper C7.7: Random Matrix Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.2 19.2 3.27 5 0
Q2 17.2 17.2 3.35 5 0
Q3 18.5 18.5 2.12 2 0

Paper C8.1: Stochastic Differential Equations

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.67 18.67 7.77 3 0
Q2 21.67 21.67 2.06 12 0
Q3 18.89 18.89 3.26 9 0
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Paper C8.2: Stochastic Analysis and PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 7 18.67 10.10 3 5
Q2 9.5 11.67 5.35 6 2
Q3 11.75 13.43 5.65 7 1

Paper C8.3: Combinatorics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.63 16.53 6.89 15 1
Q2 16.07 16.77 6.31 13 2
Q3 13.71 13.71 6.044 14 0

Paper C8.4: Probabilistic Combinatorics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.18 13.18 5.79 11 0
Q2 9.33 9.33 3.72 6 0
Q3 9.62 9.62 3.07 13 0

Paper SC1: Stochastic Models in Mathematical Genetics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.43 19.43 1.62 7 0
Q2 19 19 4.32 7 0
Q3 18.71 18.71 2.37 14 0
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D. Recommendations for Next Year’s Examiners and Teaching Committee

• Major recommendation: replacement of the scaling algorithm used in Part
C. We recommend that the scaling algorithm used in Part C should be reviewed, and
preferably changed (possibly even to something completely different), before next year’s
exams. This could be a matter for the Undergraduate Exams Working Group.

One particular issue we want to highlight is that the algorithm assigns a USM of 60 to the
Maths candidate who, counting down the ranked list, is numbered the same as the number
of MATHS I’s and II.1’s in Part B taking this paper. However, candidates getting II.2’s
and below no longer go on to Part C, so this means that the algorithm essentially always
assigns a USM of 60 to the bottom Maths candidate, whatever their score – which is daft
– so the examiners essentially always have to adjust the scaling map near USM 60, even if
it is sensible near USM 70.

Apart from this issue, the board of examiners feels a broader disquiet with our practices on
scaling: it takes hours in the examiners meeting, and often feels quite arbitrary. We agree
that scaling is essential, but maybe there are better ways to do it? There may be research
available on best practices for scaling exams.

One possibility would be not to go by Part B performance, but to scale a paper based on
comparing average raw marks for a given paper with average raw marks for the same set
of candidates on all papers, or something like this. This would have the advantage of not
excluding OMMS (etc.) candidates from the scaling data, which would be desirable. Some
C papers are taken by few MMath candidates but more OMMS, MMathPhys, etc., and the
current algorithm yields poor results for these.

• Length of dissertations: these are supposed to be maximum 7500 words long. But
there is a difficulty in counting words in mathematics, especially if you only have a PDF
file rather than LaTeX. Markers complain of receiving a lot of very long dissertations; when
markers count words by hand, these often exceed the word limit significantly. Markers were
advised to allow 10% over the word limit and then stop reading.

We recommend that next year, the department should impose a page limit of say 45
pages on dissertations (either as a replacement to the 7500 word limit, or in addition), with
a minimum font size, to exclude over-long dissertations.

• Penalties for late submission of online exams. The penalties in Exam Conventions
for late submission of online exams were: 0-5 minutes, no penalty, and 5-20 minutes, fail
mark. (Note that a fail in one paper also excludes a candidate from getting a merit or
distinction.)

The examiners felt this was too harsh. We recommend this should be replaced by a milder
graduated penalty, e.g. 6-10 minutes late deduct 1% of marks, and so on. We received many
MCEs from candidates submitting 6-20 minutes late owing to internet, phone or computer
problems. Candidates in these circumstances who did not submit MCEs would have been
hit very hard by this rule, if the examiners had not chosen to waive it.

The examiners would have been in favour of applying a mild penalty (say deduct 1–3
USMs) to everyone who submits a few minutes late, regardless of whether they had a
plausible excuse or not, provided this policy was advertized to candidates in advance. Such
excuses are trivial to invent, and completely unverifiable. The 30 minutes ‘technical time’
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for scanning and uploading scripts is generous. The temptation to use some technical time
to work on your script, and gamble on scanning and uploading quickly, is strong.

• On the change to distinction/merit/pass/fail system. This year MMath Part C
moved for the first time to distinction/merit/pass/fail rather than I/II.1/II.2/III/pass/fail.
This change includes the new rule that candidates who fail one paper (USM < 50) are not
eligible for a merit or distinction.

The examiners feel that this rule may lead to injustices, and chose to suspend it in several
cases. Mathematics examining may be more hit-and-miss than some other subjects, that
is, it is probably easier for a good candidate to have a bad exam in maths than in history
for instance, and we do sometimes set exams which are too hard and difficult to scale. We
recommend that this should be replaced by a more nuanced rule.

For example, maybe candidates should lose only one degree class (i.e. drop from distinction
to merit in the event of a fail paper), and maybe the rule should only apply when the
candidate is less than 3 USMs above the borderline (i.e. do not demote when AvUSM >
72.5 or 67.5 < AvUSM < 69.5).

We should also make it clearer in our instructions to assessors that 50 USMs is now an
important boundary, because of the failed paper rule, and ask them for their considered
opinion on what raw mark should correspond to 50.

• Comments by external examiners. The external examiners were surprised they were
involved in any scaling discussion, and felt this should have been completed locally before
the meeting. They would also appreciate a bit more feedback on how their comments on
draft papers are acted on.

E. papers and on individual questions

The comments which follow were submitted by the assessors, and have been reproduced
with only minimal editing. Some data to be found in Section C above have been omitted.

C1.1: Model Theory

Q1. The problem was chosen by about 2/3 of the candidates, and was generally well done
by those who chose it, showing a good understanding of use of the set of types realised in a
model, in a new setting. The exception was 1c. The elementary ’if’ direction was again done
well by most, but almost no one recognised the need to quote the omitting types theorem
for the ’only if’ direction (or to solve it without it.)

Q2. This was the more ‘algebraic’ question, again chosen by just over 2/3. The majority
misread the definition of ‘independent’, failing to consider that the elements a; b are equal
and thus no elements are taken from the finite cycles. With this misunderstanding, 2b
becomes false as stated. Some were able to recover, but some were unfortunately mislead
into making further mistakes.

Q3. A slightly less popular problem. Parts (a) and (b) were generally well done. In part
(d) the need to use Ryll-Nardjewski was clear to all, and often solved well or with small
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mistakes such as saying that every type has infnitely many solutions, rather than the correct
and sufficient statement that at least one does. But in other cases fundamental confusions
showed up, such as trying to find an automorphism taking an n-type to an m-type for dis-
tinct n,m.
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C1.2: Gödel’s Incompleteness Theorems

This was the second year in which exams were affected by the Covid-19 epidemic, and
the first in which all teaching was done online. Everyone tried the best they could, but
there is no adequate substitute for meeting face-to-face (even the Open University runs
summer schools), and the conditions people were working in varied from suboptimal and
demotivating to horrifying. In this context, my opinion is that every student who made it
through the year as far as writing something down for the exam, deserves to be commended.

It was decided that there should be less bookwork on this year’s papers, and that they
should be a little harder. In some papers the marks ended up spread out across a very wide
range. That was less true on this paper, however.

Now for the individual questions.

Q1. There were various different, and ingenious, solutions given to (a)(i), the simplest of
which was the Gödel sentence for Peano arithmetic.

Part (ii) of 1.(a) caused a certain amount of difficulty. There is a trap for the unwary in
the apparent complete symmetry between A, B and C. It is thinkable that the exact choice
of A, B and C might matter; so before using a “by symmetry” argument you need to be
sure that the exact choice doesn’t matter. For example, if you can prove purely from the
three equivalences given that A is provable, then it does follow that B and C are provable,
because in this situation the symmetry works.

Part (b) was done well on the whole.

In parts (c) and (d), it is vital to be very aware of the difference between the statement
that a formula is true in N, and that the same formula is provable. Failure to distinguish
rigorously enough resulted in some confusion.

Q2. This was a popular question, and many good answers to it were given. Even so, each
of (a)(i), (ii) and (iv) found people who were willing to claim that they were provable. In
some cases, it was a question of lack of care with brackets; in others, a failure to distinguish
between a formula being true in some structure and being provable.

Many good solutions were given to part (b) of question 2. In part (ii), several candidates
suspected (wrongly, for once) that there was an error in the paper. There isn’t; the p in the
formula is deliberately not modalised, and so the Fixed Point Theorem for Gödel-Löb logic
cannot be used. The formula is, however, a tautology, so any tautology is a fixed point.

Q3. was less popular, and people seemed to find it harder. It is more model-theoretic than
the other questions, and the point, particularly in parts (c) and (d), is to construct models of
the axiom system Q in which various strange things happen. In part (b), several candidates
(correctly) appealed to non-commutativity of multiplication in the ordinals.

C1.3: Analytic Topology

This was the second year in which examining was affected, and the first in which teaching
was seriously affected (or even devastated), by the Covid-19 pandemic. People were work-
ing under conditions which varied from difficult and demotivating, to horrifying. In this
context, anyone who struggled through a course, this one in particular, made it to the end,
and sat down to the exam, deserves to be congratulated.
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The exams were taken remotely and were “open-book”. It was decided, in this context,
that questions should contain little bookwork and not to be too easy. The consequence was
that there was very high variance in the marks. Little was done correctly by all candidates,
though there were some very good answers given to all of the questions.

Q1. Part (a) is essentially a proof of Urysohn’s Metrisation Theorem. In part (iv) of part
(a), an uncountable discrete space is an example of a metric space which cannot be embed-
ded in a countable product of copies of the real line.

Doing (b)(i) successfully involves noticing that M. E. Rudin’s proof of Stone’s Theorem
proves something a bit stronger than what appears to be necessary, namely that every open
cover of a metric space has a σ-discrete open refinement (not just a σ-locally finite one).
In part (ii), we apply part (i) to a countable sequence of open covers, namely the balls of
radius 1/n, for each n.

In part (c), some candidates claimed to prove contradictory things about the example given,
such as that it was a metric space and therefore paracompact, but not T3. It’s always worth
doing a reality check on anything that you’ve written. In fact the example is a standard-ish
example of a Hausdorff, non-regular space, and it’s also second countable and so certainly
has a σ-discrete basis.

Q2. In (a)(ii), an uncountable product of non-trivial metric spaces is not first countable,
and therefore not metrisable.

(b)(ii) posed difficulties. Many candidates spotted that they should use Urysohn’s Lemma
with the (complements of the) sets Un in the previous part, thus generating a countable
number of functions fn, from which f needed to be extracted. This last step proved sur-
prisingly difficult. It’s enough to adjust the fn so that their sum converges uniformly, and
then define f to be the limit.

The easiest example of a space X for (b)(iii) is probably an uncountable discrete space with
an extra point joined to it, all neighbourhoods of which include all but countably many
points of the uncountable discrete set. The closed set C is then the set whose only element
is this single point. The example given in the model solutions is more high-powered than
this and requires knowledge of set theory.

Part (c) of Q2., when joined with the results of Q.1., gives the essentials of the proof of
Bing’s Metrisation Theorem, which states that a space is metrisable if and only if it is T3

and has a σ-discrete basis. The reverse direction involves embedding the space in a count-
able product of hedgehogs, in a manner described in part (c) (metrisability is not actually
necessary for the arguments in part (c) to work).

Q3. In (a)(iii), many candidates gave an incorrect notion of uniqueness. It’s quite possible
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to have compactifications which are homeomorphic as spaces but not equivalent (exercise
for the reader).

In part (b), (i) is a tweak of a question on one of the problem sheets. The difficulty in the
first paragraph of (ii) is proving that βX has a basis of clopen sets; part (i) only gives us a
large quantity of clopen sets, not a basis consisting of them.

In (c)(ii), it is necessary to show that the point one adds to a space to create the one-point
compactification, has a local basis consisting of clopen sets. Many candidates failed to spot
how to do this.

After the difficult arguments of the previous parts of the question, (c)(iii) is relatively
straightforward: it involves putting (a)(iii), (b)(ii) and (c)(ii) together and drawing appro-
priate conclusions.

C1.4: Axiomatic Set Theory

This was a hard paper with candidates not reading the questions carefully and often missing
the main points of the parts of the question or how different parts interacted.

Question 1 was by far the most popular question, whereas questions 2 and 3 were attempted
roughly equally often.

A surprisingly large number of candidate submitted only very limited amount of work.

Question 1: In (a)(ii) a number of candidates erroneously assumed that the classes satisfy
fragments of ZF (in particular the Union). Hardly any candidate remarked that transitivity
was absolute for A,B and a large number of candidates only gave examples of A,B, x, z, z′

such that (z = TC(x))A, (z′ = TC(x))B and z 6= z′ without explaining why this showed
(¬ z = TC(x))B.

In (b) a lot of the attempts for (i) and (iii) were overly long and complicated and often
incomplete. For the examples in (ii) and (iv) only very few candidates used concrete F to
show that certain failures of Foundation can indeed happen in ZF−.

Only very few candidates made a credible attempt at (c).

Question 2: Part (a) was mostly well done although not all candidates explicitly men-
tioned that C is transitive and hence a lot of formulas are absolute.

In part (b) only few candidates even attempted to describe how to modify a formula with
parameters from a to a suitable formula with paramters from a ∩ x. No candidate picked
up on the importance of defining the (global) well-order inside Ba for which being able to
assume (from (i)) a ∈ Ba is crucial.

Part (c) was attempted only by very few candidates.
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Question 3: Part (a)(iii) was harder than expected with only few candidates attempting
this.

Because of its modular nature candidates gained a reasonable amount of marks in (b)
but most applied well-foundedness of R directly to non-empty classes without explanation.
Proofs for S(x) ∈ On were overly complicated with only few candidates considering an R-
minimal counterexample. Only few candidates attempting (c) realized that the assumption
of R being set-like had been dropped.
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C2.1: Lie Algebras

This paper was generally well-answered. Question 1 was attempted by all candidates, and
most scored well on it. Questions 2 and 3 were more evenly divided, with question 2 being
slightly more popular. A number of candidates lost marks in question 2 because they
ignored the condition that the semisimple and nilpotent parts of an element must commute
with each other. Those attempting question 3 scored well, though most lost marks in the
final part by failing to properly justify why a direct sum decomposition of the Lie algebra
will yield a corresponding decomposition of a Cartan subalgebra.

C2.2: Homological Algebra

Q1: All candidates attempted question 1. The standard of answers was quite good. Not
all candidates realised that the length of the resolution only gives an upper bound on the
dimension, and that one needs to show Ext non-vanishing in order to get a lower bound.
The last part of the question was challenging and very few managed it.

Q2: The standard of answers was varied. Not all candidates used the exactness of the
colimit correctly in their proofs. The last part of the question was challenging and there
were few attempts of it.

Q3: The standard of answers was varied. Few candidates used Kunneth in order to show
that the tensor product of the bar resolutions is a resolution in part a. There were not
many attempts of part c as it required a good understanding of the proof of part a. Few
attempted the last part of the question.

C2.3: Representation Theory of Semisimple Lie Algebras

Question 1 was selected by fewer students. Part (b)(i) could be appropached in two rather
different ways: one was to use the Weyl dimension formula to determine the dimension of
the representation, thus deducing the dimension of the missing weight space. The second
way was to use the inductive algorythm for computing weight multiplicities, based on the
Weyl character formula. In Part (c)(i), a typical mistake was to claim that the short roots
correspond to a subalgebra of G2 (it’s the long roots which correspond to a subalgebra of
G2).

Question 2 Some students made their life unnecessarily complicated in Part (a)(i) by using
generalised weight vectors as opposed to weight vectors – without realising that this doesn’t
change the set Ψ(V ). The computations in Part (b)(i) look rather different depending which
definition of so(2n) one adopts: there exist at least three different ways of describing so(2n)
in terms of matrices, and the Cartan subalgebra h ends up looking quite different depending
on the choice.

Question 3 In Part (c)(i)(β), there was some confusion as to whether n was assumed to be
an integer or not (my intention was for n ∈ N to be assumed). Luckily, as the case n 6∈ N
was anyways a part of what was being asked in Part (c)(ii)(β), no harm was done to those
students who spent the extra effort to describe what happens when n is not an integer. Part
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(c)(ii)(β) was harder than expected, and no students noticed that the module described in
Part (b) has the same formal character as a Verma module.

C2.4: Infinite Groups

Question 1 was well answered, and for the last part of it several different approaches were
provided. Most students went on to answer Question 2, and while displaying solid knowledge
of the linear and nilpotent groups, some of them spent a lot of time on standard matrix
calculations, and did not manage to get to the last question, on the order of growth. About
a third of the students attempted Question 3, and provided almost complete answers. A
few did not realize that the map F is not a group homomorphism and therefore a proof of
its injectivity cannot reduce to a study of the kernel.

C2.5: Non-Commutative Rings

Question 1: This was the most popular question, with only one student not having a good
go at it. Part (a)(i) is essentially bookwork, but was nevertheless not done well. For part
(ii), people tried to use the aRb⇒ a = 0 or b = 0 definition of prime ring. However, using
the “product of two non-zero two-sided ideals is again non-zero” formulation is much easier
here. (a)(iii) was seen on problem sheets and was done very well by most. Part (b) was OK.
Part (c)(i) was the hardest part of Question 1, with only one person getting somewhere in
the solution. Since this exam was open-book, recitations of the proofs of Goldie’s Theorems
were not required; a couple of people also managed to mis-read the question. Part (c)(ii)
was mostly OK.

Question 2: (a) was fine. In (b)(i), about half of the students didn’t try to compute the
endomorphism ring D of k[x1, · · · , xn] as an An(k)-module, and consequently lost a lot of
marks. (c)(i,ii) was fine but (iii) defeated nearly everyone. Question 2 was attempted by
around half of the students.

Question 3: parts (a,b,c) were mostly done well. However no-one managed to solve (d)
fully: the key difficulty is realising that one can reduce to the case where Ã/J has no non-
zero t-torsion elements. If this condition holds, then it is possible to show that the natural
filtration on the de-homogenisation I = ∪nJn of a graded left ideal J = ⊕nJnt

n of the Rees
ring coincides with the subspace filtration on I.

C2.6 Introduction to Schemes

Almost all candidates attempted Q1, and then about twice as many attempted Q3 compared
to Q2. The average in the three questions was 19, 15, 17.

In Q1(a) there was a minor typo in the exam where it asks to find the topology of X, namely
there was a Hint that candidates should show that “non-empty proper Zariski closed sets of
SpecZ[i] are the finite subsets” (that part had no typo) but the following text “of Z[i]\{0}”
should have been “of SpecZ[i]\{0}. Fortunately, from the scripts it appears that candidates
were all content with the main idea of the Hint of showing that proper closed subsets were
finite, which was correctly stated.

In Q2(a) in the last part candidates erroneously picked fi for Pn which did not lie in F ∗(Ui).
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In Q3(b) and Q3(c) not all candidates exploited the knowledge from the course about how
push-forward and pull-back transform modules.

C2.7 Category Theory

Most candidates found this paper hard; although there were many good answers there were
no essentially perfect solutions to Questions 1 and 3 and only one to Question 2.

Much of Question 1 was competently answered (although as in past years there were disap-
pointingly many candidates who did not give a correct description of coequalisers in Set).
However there were no serious attempts at the last part 1(b)(iv); this had been expected
to be found difficult and had not been allocated many marks.

A good number of candidates provided first class solutions to Question 2. Some candidates
were tripped up in 2(a)(ii) by forgetting that a pointed set must be nonempty; most found
it hard to produce a counterexample for 2(c)(ii), although they believed correctly that the
statement was false. There were some nice solutions to 2(d).

Question 3 was far less popular than the other two, and only one solution to this question
was given a first class mark.

C3.1: Algebraic Topology

The quality of the scripts was extraordinarily varied, with 28 scripts and roughly 3 can-
didates within every 5-point raw-mark-bracket between 0-50. Four scripts were essentially
perfect, but the average scores on the three questions were rather low: 15, 13, 14. Almost
all candidates attempted Q1, but almost twice as many preferred Q3 over Q2. Generally, it
seemed candidates had not absorbed many ideas from the course, in contrast to the previous
year.

Question 1.
There appeared to be fundamental knowledge gaps in many scripts, for example (1) can-
didates not appreciating the word ‘free’ in Q1(a) therefore omitting half of the bookwork
proof, and many candidates not being able to reproduce the other half of the proof with
precision; (2) many candidates were splitting sequences without justification in Q1 despite
explicit Lemmas in the course notes highlighting when it is allowed, and numerous proofs in
the notes repeatedly justifying tricks to split. A suspicious number of scripts tried to solve
Q1(b) by mentioning a cycle basis (or fundamental cycles) from graph theory, most without
proof and, crucially, not justifying why the homology groups were free (despite emphasis
in the course on submodules of free modules being free, in particular the kernel and image
of maps between free abelian groups being therefore free). In Q1(c) the Hint was one step
away from imploring candidates to use Alexander duality; most candidates steamed ahead
with many pages of excision calculations that led nowhere.

Question 2.
In Q2(b) candidates often did not justify why it was a chain map, and wrote down a functori-
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ality diagram without proving that it commuted. In Q2(c) most candidates underestimated
the proof of exactness which, although not hard, is not as easy to justify as might first be
expected. No candidate did the very last part of Q2(d) correctly, due to a slip: on homology
with Z/2 coefficients, in the top degree, candidates assumed incorrectly that the projection
Sn → RPn was non-zero.

Question 3.
In Q3(a) several candidates muddled up how they presented the ring due to an issue in
degree zero: if one presents the cohomology as a direct sum of the cohomologies of the two
spaces, then in degree zero the respective units (1, 0), (0, 1) would incorrectly multiply to
zero (even if one declares them to be identified). Many candidates struggled with homology
calculations in Q3(b) and Q3(c), despite being given two spaces which up to homotopy
equivalence are a point and a circle respectively (the two simplest spaces available, after
which the next simplest are: Q1 about collections of circles and Q2 about spheres). Several
candidates thought the space in Q3(b) was one infinite cone with a vertex, rather than two
infinite cones joined at the vertex, perhaps being thrown off by the space being declared as
a ‘cone’. This of course made it harder to justify why the space was not a manifold, since in
that case it is a topological manifold, but candidates nevertheless managed to find a reason.

C3.2 Geometric Group Theory

Question 1 was attempted by all candidates, with good results on the whole. Most of the
mistakes were in part c, where a number of attempts to change the presentations were
made without any kind of method, and this turned out to be either unsuccessful or time
consuming.

Question 2 was likewise popular. In the second part of (a) a number of candidates tried to
use properties of universalities of amalgamated products, instead of an approach using ac-
tions on Bass-Serre trees. Surprisingly, the last question had the least number of successful
attempts.

Question 3 was attempted only by three candidates out of 20,with only about a quarter of
the questions receiving correct answers. This may be as usual related to the fact that this
question covered the last part of the course.

C3.3: Differentiable Manifolds

Students obviously found this exam challenging and so I would definitely recommend some
significant scaling. There were very few easy marks to be gained (due to the lack of book-
work) which meant that all marks were shifted down as a result. As an indication, the top
raw mark was 37/50 (clearly by a strong student), two students achieved the lowest raw
mark which was 7/50 and the average raw mark was approximately 23/50. All questions
appeared to be roughly equally challenging based on student performance.

No changes were made to the marking scheme.

If possible, please give your own estimate of which raw mark out of 50 should correspond
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to a scaled mark of 70 (out of 100, the bottom of the First class), which raw mark should
correspond to a scaled mark of 60 (the bottom of the Upper Seconds) and which raw mark
should correspond to a scaled mark of 50 (the bottom of the Lower Seconds).

C3.4: Algebraic Geometry

Question 1: This question was attempted by the overwhelming majority of candidates.
Some students failed to see in (c) why the ideal is not prime, but most solutions cleared
that hurdle. In (d), most students found the right form of the map, but several attempts
at proving the surjectivity of this map were imprecise or incomplete, in particular including
some handwaving around ”choice of roots of unity”. Some students proposed formulas for
an inverse that included cube and other roots; such maps are clearly not regular in the sense
the course defined regular maps. In (e), some students failed to address irreducibility; the
easy argument that (d) implies that C2 is a curve (so dim 1) was often missed. As for (f),
most students failed to find the straightforward proof that the obvious 2-generator ideal is
in fact prime.

Question 2: This question was attempted by about half the candidates. In (b), many
students failed to notice that by differentiating xtBx, we get that the singular locus is
simply the projectivisation of kerB. Lots of essentially complete solutions were given to
(c), either by direct calculation, or by recalling (in full) the Segre embedding. Part (d) was
also done well by many students, either by explicitly factoring the equation or by writing
down the equations of some line and solving equations for the coefficients. A comment that
stated simply that ”this is a famous theorem about cubic surfaces” only received fractional
credit, as this theorem was not part of the course.

Question 3: This question was also attempted by about half the candidates. Some stu-
dents failed to note in (a) that essential aspects of a resolution of singularities are that it
should be a surjective and a morphism. In (b), some students failed to address why the
cover they propose is by affine varieties. (d) was generally done very well. In (e), some
computational mistakes or failure to look at all affine charts suggested to some students
that point blowup might actually lead to a resolution. (f) was generally done well unless
time pressure prevented students from addressing this question.

C3.5: Lie Groups

Candidates found this a hard paper, though there were some good answers, especially to
Question 1.

All candidates attempted Question 1. The part which caused most difficulty was 1(a)(iii):
very few candidates were able to describe the irreducible representations of O(2) correctly.
Many forgot to include the hypothesis that G should be connected in the statement of
the Maximal Torus Theorem required in 1(b), though it appeared that some realised the
relevance of connectedness when answering 1(d) and then corrected their answers to 1(b).

The amount of unseen material in Question 2 was perhaps off-putting to candidates. There
were some nice answers to 2(a) and 2(b) but almost no attempts at (c), possibly from lack
of time.

More candidates attempted Question 3. On the whole 3(a) and 3(c) were well done, although

30



there were not many completely satisfactory descriptions of the integrand in the Weyl
integration formula. 3(b) was found much harder, especially 3(b)(iii), even though there
was a similar calculation in the lecture notes.

C3.7: Elliptic Curves

Question 1: Attempted by 12/23 candidates. Parts (a) and (c) were done well. The
majority but by no means all candidates also scored fairly highly on part (b), taking the
expected route of using Hensel’s Lemma to lift the singular point (with one candidate taking
a different approach).

Question 2: Attempted by 16/23 candidates. Parts (a) and (b) were fairly routine and
most scored highly on them. There were a number of different approaches taken for (c),
probably the simplest being that twice the point does not satisfy the Nagell-Lutz theorem.
Part (d)(i) was quite hard and only a few candidates made a decent attempt at this, but
most candidates scored quite well on (d)(ii).

Question 3: Attempted by 18/23 candidates. There was quite a broad spread of marks
for this question, with most candidates scoring highly on part (b), but quite a number not
making progress with (a)(i) even though it was closely related to a question on the problem
sheets.

C3.8 Analytic Number Theory

Overall the questions were successful. Question 1 was the most popular, but all attracted a
good level of responses with a good range of marks distinguishing the stronger candidates
from the weaker ones. In retrospect the changes to the open book format probably made
the questions a bit too long because pure bookwork parts were replaced with things that
required some thought - they should certainly be quite a bit shorter for an in-person exam.
A couple of candidates seemed to suffer from time-issues, but this did not seem to be a
widespread problem.

Question 1 was attempted by a majority of the candidates. The first parts were generally
answered well, although a surprising number of candidates struggled with part (b) despite
there being a number of examples sheet questions (and past questions) of a very similar
flavour. Candidates were often inprecise (or missed some subtelties of convergence) in part
(c) and part (d) was a good distinguisher for the stronger candidates.

Question 2 was generally answered well by the candidates who attempted it. Most candi-
dates scored very well on (a) and (b) - perhaps because (a) was similar to part of a question
in an exam from a few years ago. Even the candidates who struggled with the harder part
(c) seemed to have the main idea, which was nice to see.

Question 3(a) attracted a number of different approaches (even though it was close to a
lemma from the notes) - some candidates were careless about convergent integrals, but
otherwise it was answered well. Part (b) was typically answered very well, whereas part (c)
and (d) distinguished candidates. I was slightly surprised how many candidates struggled
with (d), even though much of this was very close to an examples sheet question.
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C3.10: Additive and Combinatorial Number Theory

Question 1 was attempted by all the 11 students. Part 1(a) surprisingly caused some
difficulties for about half the students; they missed the fact that after completing the square
in the exponential the sum indeed becomes a Gauss sum by a change of variables. Part 1(b)
(bookwork) was done relatively well, although a few students forgot to treat the case h = 0
separately after squaring and changing variables. Part 1(c) was also done well. Part 1(d)
caused a lot of difficulty: The claim in the hint was proven successfully by a few students,
but almost none correctly utilised the hint to solve the problem. A correct solution using
the hint uses the Chinese remainder theorem to reduce to prime power moduli and then
performs a slight refinement of the analysis in 1(c) to show that there are many solutions
modulo p satisfying the conditions of the hint. These latter two points were missed by
many.

The average marks for this question were 12.7.

Question 2 was attempted by the majority of students (8/11). Part 2(a) was solved perfectly
by almost all who attempted it. The same applies to 2(b), apart from a couple of slight
calculation errors made there. Part 2(c) (bookwork) was generally well done, though none
managed to explain the density increment step of the proof quite convincingly enough.
The proof sketch requested in 2(c) consisted of a step where the exponential function is
discretised to make it locally nearly constant in arithmetic progressions, and a proof that
the resulting density increment in a progression must terminate in bounded time. The
former task was well done, but for the latter task many claimed that an increase in density
as such was enough to complete the argument, whereas one needs to note that the increase
in density is uniformly lower-bounded to actually assert that claim. Question 2(d) (worth
only 1 point) surprisingly caused much difficulty and was solved only by two students. Here
an example of a set with a certain property was requested, and one could simply take the
set of odd numbers. Questions 2(e) (parts (i) and (ii)) caused much difficulty and each part
had just one perfect solution. This part was a little different from the others, and almost
everyone either did not use the hint or did not realise its connection to geometric series.
The only correct attempt to 2(e)(ii) used the Weyl equidistribution theorem, a theorem not
used on this course but one that did the job nicely. There were some partial attempts using
the hint and therefore methods learned on this course.

The average marks for this question were 12.0.

Question 3 was attempted by only two students. There was great variation in the number
of marks obtained (one essentially complete solution and one attempt worth only a couple
of marks). Part 3(c) seems to have been the most difficult one, based on limited evidence.

The average marks were 12.0, the same as for the much more popular Question 2.

C3.11: Riemannian Geometry

Question 1. Part (a) was bookwork and was usually done well, except some candidates
lost a mark for not mentioning orientations when defining the Gauss map. Part (b) was
typically done well, though common errors were in not correctly stating the Gauss equation
and not discussing orientations. Part (c) proved to be challenging for students. Most
students correctly used the hint and then obtained the Gauss map, but then did not do
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the computation correctly or efficiently to obtain the principal curvatures. Almost every
student attempted this question and there was a wide spread of marks from high to low.

Question 2. Part (a) was bookwork, but marks were lost for not fully stating the Hopf–
Rinow theorem and for not correctly giving a counterexample in (a)(ii). Part (b) was
usually done well, with only one student losing marks through lack of justification of their
arguments. Part (c) proved challenging with students not seeing the correct way to use the
arguments from part (b). This was noticeably the least popular question on the paper and
the marks were all in the range 10–20.

Question 3. Part (a) was bookwork and almost always answered correctly. Part (b)
proved challenging with difficulties on all parts of the question. Several students spotted
the use of stereographic projection form the n-sphere in (b)(i), but most did not. Most
students spotted the application of Bonnet–Myers in (b)(ii), but some did not fully justify
it. Part (b)(iii) proved the most difficult, with most students not recalling the hyperbolic
metric. Part (c)(i) was bookwork and answered correctly. Part (c)(ii) was usually done
quite well, with students typically losing marks for not justifying the application of the
classification of space forms, and for not explaining fully how to apply it to reach the
desired contradictions for the cases when at least one of n,m > 1. Part (d) was usually
done well, with marks typically only lost for not fully justifying the application of Synge’s
theorem. Almost every student attempted this question and there was a wide spread of
marks from high to low.

C4.1: Further Functional Analysis

Question 1
Part (a) was generally well done. Many candidates got started in part (b)(i), but quite a
number of candidates where unable to obtain the norm estimate by using the quotient norm.
Only a very small number of candidates where able to give an appropriate space X to host
an example for (b)(ii), such as c0 (which might have been suggested by looking ahead to
(c)) and a full counter example was rare. Part (c) proved challenging for many, and while
a reasonable number had the idea of how this should work, not very many candidates were
able to supply the details.
Question 2
Part (a) was generally well done. Part (ii) and (iii) was designed to test the bookwork proof
of the Banach-Alaoglu theorem, and the metrisability of the weak∗ topology on the unit
ball of a Banach space in a somewhat different setting. Most candidates did (ii) well, but
(iii) was a bit more variably answered.
In part (b)(i), many candidates realised that compactness of T can be obtained as a norm
limit of finite rank operators, though the details where not always well executed. (ii) proved
challenging, with only a few candidates applying the spectral theorem to the compact self-
adjoint operator T ∗T .
Question 3
Part (a) was very well done in part (i), and in (ii) pretty much all candidates had the right
ideas, but some failed to give a convincing argument for the strict inequality f(a) > α.
Many candidates gave correct answers to (iii) — often with far more details than were re-
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ally needed — but some struggled with this 2D example (and gave examples which would
contradiction (b)(ii)).
Both parts of (b) proved challenging, with some candidates struggling to get started, though
there were a number of completely correct answers. In (b)(i) a number of candidates didn’t
say how an open set Va as in the hint could be constructed. In (b)(ii) a number of candi-
dates weren’t clear how they used results from the course so as to apply (i).
(For students using this report for exam preparation in future years, the slightly unusual
wording of the hint was chosen as the result in the hint appeared on the problem sheets,
and not explicitly in the lecture course).

C4.3: Functional Analytic Methods for PDEs

Q1: This question as attempted by all but one candidates. Parts (a)(i), (b)(i) and the
first half of (b)(ii) were handled well. Part (a)(ii) was handled mostly reasonably well. For
the second half of (b)(ii), there were a number of attempts with variable degree of success.
Here, if one views X as the subspace of of weakly curl-free vector fields, then one may see
that the domain may give a problem to the existence of a potential function. Part (b)(iii)
was attempted by about two thirds of the candidates, and about half of those could relate
B to a kind of projection operator.

Q2: This question was attempted by a bit less than two thirds of the candidates. Parts
(a), (c) and (d) was handled well with minor exceptions. Part (b) was most problematic
despite the fact that there was a similar problem in the problem sheets where L had no
kernel. Only a small number of candidates applied correctly Rellich–Kondrachov’s theorem
to complete their contradiction arguments.

Q3: This question was attempted by a bit more than two fifths of the candidates. Part
(a)(ii) was handled mostly well. Most candidates have some right ideas for (a)(i) and (b)
but fell into various traps. For (a)(i), one needs to use a correct interpolation inequality.
For (b), a number of candidates incorrectly claimed that Ma was convex. Only a small
number of candidates mentioned a few words on (c), and two of them suggested correctly
the form of trial functions to use in (? ? ?).

C4.6 Fixed Point Methods for Nonlinear PDEs

Question 1 was about the first part of the course regarding Brower’s fixed point theorem and
null Lagrangians. The question was chosen by 12 students. The solutions mostly ranged
from good to almost perfect, with very few cases just above the sufficiency level.
A common mistake has been to take B \ {0} (which is open and bounded but not compact)
as counter-example in 1 (iv), which asked about the validity of a property for compact and
connected subsets.
Point (c) (ii) was new, it needed a good handling of integration by parts and Fubini’s
Theorem, and a good intuition about which computations to do. It was meant to be
challenging and indeed only a couple of solutions addressed it properly.

Question 2 was about Schauder’s and Banach’s fixed point therems and applications to
nonlinear PDEs, plus an application of weak maximum principle. The question needed a
good handling knowledge of preliminary material such as Sobolev embeddings and standard
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properties of the Laplacian. The question was chosen by 11 students. The solutions mostly
ranged from good to almost perfect, with very few cases just above the sufficiency level.
A common imprecision was not to recognise that the most general space for source term f
in (2) is H−1, the dual of W 1,2

0 . This was not penalised too much: only one mark if the rest
was properly addressed.
Very few solutions did not recognise that 2(b) was an application of weak maximum prin-
ciple (and got stuck in the estimates)
Applications of Schauder’s and Banach’s fixed point theorems in 2(d) and 2(e) were overall
well done (not everyone attempted 2(e) though); from time to time there was some im-
precision about the estimates and the choice of function space. An annoying error that
occurred at least a couple of time was to choose L2 as function space for the application of
the relevant fixed point theorem. This choice does not make sense for the (nonlinear) PDE;
notice that in point 2 (a) the function space was set to be X = W 1,2

0 (Ω).

Question 3 was about variational inequalities and applications to non-linear PDEs of p-
Laplacian type. As in question 2, also here it was necessary to have a good handling
knowledge of preliminary material such as Sobolev embeddings and standard properties of
the Laplacian. The question was chosen by 8 students. Apart from one exceptional case
that merely attempted the question, the solutions ranged from very good to almost perfect.
Point (e) was new, it needed a good handling of the notion of convexity and minimisation.
It was meant to be challenging and indeed only a couple of solutions addressed it properly.
The most common error was not to realise that being a critical point (i.e. satisfying the
Euler-Lagrange equations) is only a necessary but not sufficient condition for being a global
minimiser.

Summary: The paper has been successful. The spread of questions attempted and the
spread of marks for each question do not seem to indicate to me any major deviation from
the expected patterns.

C4.8 Complex Analysis: Conformal Maps and Geometry

1. (a) Most of the students can only do p = 2 case. (b) Most of the students did not do
well. They may know (ii) is related to the growth theorem of S class, but have difficulty
in analysing the integrand. One student managed to solve both (a) and (b), but no one
completed (c).

2 (a) Several students did well in this problem. (b) Most of students who attempted this
problem can sort out the conformal map sending the domain to the upper half plane.
But since the maps they constructed are involved, they could not provide the final answer
directly. One did obtain the final result. (c) Most of the students who attempted this
knew the basic strategy. The justifications may be a bit rough. (d) One student solved this
problem. Some mentioned the correct theorem for solving the problem, but did not provide
the value of L in the theorem.

3 This question is attempted by most of the students. The students respond well to (a)
and (b). (c) Some students managed to find the correct map as suggested in the hint and
solved the problem. While the rest did not get the map explicitly, thus could not correctly
find the greatest annuli which separates the unit circle from the image of the segment. (d)
Most of the students got the idea to solve this problem, but some has difficulty in choosing
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the map. (e) A few students managed to complete the problem.

C4.9: Optimal Transport & Partial Differential Equations

The overall performance of the cohort was very good. I have the impression that the exam
might have felt a bit long to them based on the fact that no one attempted all parts of a
single question.

Q1. This question was taken by all the students. They perform fairly well. The basic parts
were done by most of the students. Half of them had an issue connecting laws of random
variables and the push forward of a measure through a map to answer properly the question
about the convolution. The most complicated part was only answered by 1/2 of the students.

Q2. This question was taken by 1/3 of the students. The basic parts were well answered
by them. The most advanced parts that needed a new idea were partially developed. An
intuition about the meaning of transporting measures seem to be missed by the students to
answer the questions faster. The performance was anyhow good overall.

Q3. This question was taken by 2/3 of the students. The bookwork and seen parts of this
question were properly done by most of them. However, the newer parts were not developed
by many of them in full. Conditions to apply Cauchy-Lipschitz theory for global solutions
of ODE system are more than checking that the velocity field is Lipschitz continuous in the
unknown variable and students tend to forget it.

C5.1: Solid Mechanics

Q1: All students tried this question and did it quite well (with an 18/25 average) probably
due to the format of the question (asking the students to recover a given result is always
a huge help). The first 13 marks were mostly straightforward and students showed a good
understanding of the basics of nonlinear elasticity. Only a couple of students made progress
in the last part that required more computational skills.

Q2: Similarly to the first question, almost all students (13/14) tried this question with a
decent average but only three students fully understood the problem. Most students seem to
struggle with the first part that was supposed to be straightforward (a direct computation of
the stresses). Some students fail to obtain the correct response coefficients and got bogged
down after that. For Question 2b, there were two possible sets of identities that could have
been used, leading to slightly different results. I gave full benefit to the students and full
marks for the use of either set. One of the inequalities in Q2c was difficult to manipulate
and I was pleased to see a few students handling it well.

Q3: Only one student tried this question and did very well. While it looked a bit more
complicated than the other ones, it was probably easier than Q2 with the proper conceptual
understanding.
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C5.2: Elasticity and Plasticity

Question 1 This was a relatively popular question. In part (a), many candidates in-
sisted on rigidly following the lectures notes rather than answering the question, and many
obtained erroneous formulae for K (although they were the same as for Rayleigh waves).
In (b)(i), almost no-one understood the contribution of the normal stress τyy to the beam
equation. In (b)(ii), several candidates didn’t combine P- and S-waves to satisfy the bound-
ary conditions (although a similar example was done on a problem sheet), and many also
struggled with the basic algebraic manipulations needed to get the result. Almost no-one
made significant progress with (b)(iii).

Question 2 This was also a popular question. Part (a) was similar to lectures and
was done well. The stronger students were able to adapt the argument for a string from
the lectures to do part (b). In part (c), very few candidates understood that the beam
and obstacle curvatures must match before the contact set can expand, but the stronger
candidates were still able to calculate the force F for δ > κL2/3. In part (d), most candidates
correctly tried to use energy conservation, but either got stuck or were stymied by not having
the correct formula for F from part (c).

Question 3 This was the least popular question but attracted the best solutions. Parts
(a)–(c) involved incorporating adhesion in the analysis of radially symmetric deformation
of a granular medium from the lecture notes, and the relatively familiar calculations were
generally handled well. In part (a), several candidates ignored the hint and pointlessly
derived the required properties of the Mohr circle. In part (d), most candidates were able
to use the associated flow rule to derive the given equation for u in the plastic region, but
almost no-one could see how to use continuity to solve for u everywhere.

C5.3: Statistical Mechanics

The exam was generally well done, with difficulties arising mainly in the final parts of the
questions.

Q1 was attempted by all students. Q1(a) was generally well done with an occasional mark
dropped because the final part of question part (a) on the efficiency was not completely
followed through or an occasional glitch in the algebra. Q1(b) was successfully attempted by
the majority of the students, though in the last part ( ie (iii) ) some struggled to understand
what they had to do. There were also occasional algebraic errors in b(i)-(iii).

Q2 was attempted by the majority of the students, and the results were generally good,
with the challenges arising from in particular (c).

Q3 was attempted by the minority of the students. Some struggled with (b) and/or (c).

C5.5: Perturbation Methods

Q1

Overall the question was answered well. The first part of the question presented little
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difficulty in general though a small number of candidates stopped at the first iteration,
thus failing to confirm that the first iterate was indeed the first term in an asymptotic
expansion. In the second part there were numerous good solutions though justifying that
the infinite number of corrections, even when summed, were still o(1/xm) distinguished the
best solutions.

Q2

This was the least popular question, though it was a generalisation of a very similar problem
in the lecture notes. The latter entails that students trying this question as part of revision
in future years will find it more difficult than intended if the lectures no longer consider
this example. The fundamental difference with the lectured example was the exp(xu) term,
which could be expanded via

exp(xu) = exp(xu0 + εxu1 + . . .)

after which the structure of the question was similar, though the complexities of dealing with
the f(x, x/ε) term, which had no analogue in lectures, differentiated the best candidates.

Q3

This was the most popular question and it was answered well in general. Most solutions
picking up all or most of marks controlled the complexity by noting that using the expression
in part (a), together with the equations governing ϕ and A0 in part (b), gave an extensive
simplification for

d3yW
dx3

+ x2yW .

C5.6: Applied Complex Variables

Q1: This question was attempted by most candidates and was generally done well, apart
from part (d) which required more independent thought. For Part (a), a few candidates
were confused by interior and exterior angles, and in a number of cases the multiplicative
constant C in the mapping was left too general (or was assumed to be real). Parts (b)
and (c) were managed fine by most candidates. For part (d), only a few gave a reasonably
explanation of why the given quantity represents the film thickness at C. Most candidates
realised they needed to do some sort of integral of the equations from (c), but many were
confused by what limits to take.

Q2: This question was attempted by few candidates, perhaps reflecting the fact it looked
most different from previous exam questions, although it followed a similar recipe. Parts
(a) and (c) were both done well. The conversion between the limits as Y → ±∞ and those
as z →∞ and z → 0 caused some difficulty in (b), and no-one really got very far with part
(d). In particular, all but one attempt wrongly assumed that H(z) needed to be zero.

Q3: This question was done very well on the whole, especially parts (a) and (b). For part (c)
a common slip was to assume that c > 0 without comment, and in some cases the ordering
of the logic to explain why the expression is constant was not quite right. For part (d), quite
a number of candidates obtained the correct result, although the algebraic manipulations
required a lot of reverse-engineering in some cases. The most common difficulties were errors
in computing the residues, and having the wrong orientation of the inversion contour.
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C5.7: Topics in Fluid Mechanics

Of 19 candidates, 16 did question 1, 13 did question 2, 9 did question 3. The marks ranges
were: > 35: 3; 30 – 35: 7; 24 – 29: 6; < 24: 3. There was a good spread of marks, with the
average being on the low side. This seems to be entirely due to question 1, which was done
uniformly badly by all candidate, with a marks range of 5 – 15. A simple remedy to adjust
the marks would be to add 5 or 6 to the scores for question 1.

Marking question 1 was one of the more depressing experiences of my Oxford career. Most
candidates chose this question as the relatively straightforward ‘banker’. As indeed it should
have been, the question being entirely parallel to a homework question, with the twist of
having cylindrical coordinates. It was long, but it was not this that was the problem. No
candidate managed to traverse the algebraic manipulation, and every answer was littered
with basic error. Something went wrong here. It would be a good idea to set this question
again in several years’ time.

By contrast, questions 2 and 3 were reasonably well done, with a good spread of marks.
There was a mild but inoffensive typo in question 3.

C5.9: Mechanical Mathematical Biology

Q1. Part (a) was done very well by candidates attempting this question. Several candidates
got tangled up in the calculations in part (b)(i), which led to poor answers to part (b)(ii).
Part (b)(ii) required first observing that n ≡ Nez, and then expressing the moment balance
in component form for one relation, and combining the constitutive law for moment with
the boundary condition for m for the condition. This caused some conceptual issues, but
was done perfectly by one candidate.

Q2. This question was attempted by most candidates, and was largely done well. There
were no consistent trends across scripts in where marks were being lost. Some candidates
struggled with the bookwork derivations in part (a) but answered part (b) well; for others it
was the reverse. In part (a)(iii), obtaining full marks required finding the appropriate length
scale to balance the different terms and then showing that this indeed produced a dominant
balance by considering the size of the remaining term. Part (b)(ii) was a straightforward
calculation via asymptotic expansion; full marks required obtaining an integrated analytic
solution and correct interpretation that decreased local surface tension leads to an increased
sag.

Q3. Part (a) of this question followed quite closely an example from lectures/notes, and
was done well, though there were some struggles with obtaining approximate solution in the
limit b� 1. Obtaining the required form in part (b)(ii) required careful manipulation of the
constitutive law and attention to relations between the different variables. Some candidates
seem to have not had time to answer the final part, which was entirely conceptual, and was
answered well by those who attempted it.

C5.11: Mathematical Geoscience

Q1: This question was the least popular but had (marginally) the highest average mark.
Possibly some candidates were put off by the fact that more of the material was unseen,
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although the ideas used would have been mostly very familiar. Part (a) following the
lectures was done well. For part (b), there was a large range of answers, some completely
correct but others quite lacking in understanding. There were several attempts to throw in
spurious factors of 4 to get the required answers, common mistakes being to not identify the
equation in (i) as a local energy balance rather than a global one, and to miss the Jacobian
when performing the integral in (ii). Part (c) was done quite well by many, though only
one candidate had the correct final interpretation for the time of day.

Q2: Part (a) was done well by most candidates, though some arguments for why the factor
depending on λ that appears in (ii) was greater than 1 were missing or weak. Part (b)
caused surprisingly many difficulties given how many examples of solving such problems
along characteristics we covered in classes. Many candidates got full marks, but some
got rather few, with common confusions being to hold the wrong quantities fixed along a
characteristic, or to not notice simplifications in eliminating characteristic variables. Part
(c) continued the theme of characteristics and was harder. Despite a very similar question
in 2019, none of the candidates clearly noted that the characteristics are different from those
in (b), and wrongly separated the two families of characteristics by the shock rather than
by the c characteristic that emerges from the origin (no-one seemed to notice the relevance
of (a)(ii) which had hinted that the characteristics were different).

Q3: There was an unfortunate but obvious typo in the first equation which has ∂p/∂z
instead of ∂p/∂x. This was either noted and corrected, or ignored, with most candidates
obtaining close to full marks on part (a). There were a few slips or confusions in the
non-dimensionalisation, which was deliberately (but clearly) different from the that used
in the lectures. Part (b) was mostly done well, with the main errors being to not consider
x < X, and/or to make H discontinuous at X through an inappropriate choice of constants
of integration. Part (c) proved quite challenging, with many candidates perhaps bogged
down by algebra rather than thinking carefully about which integrals were needed.

C5.12: Mathematical Physiology

This paper seemed to work very well. The split between attempts on the three questions
was 22 – 14 – 18, with respective marks ranges of 8 – 22, 11 – 23, and 8 – 22. The range
of total marks out of 50 for the 27 scripts was 18 – 45, with 5 ≥ 40, 13 ∈ [30, 39], and
6 ∈ [25, 29]. There was the almost obligatory (but luckily inconsequential) typo iin question
1, where gC metamorphosed into gL, The questions were long but mostly straightforward,
and seemed to work well for the online environment.

C6.1: Numerical Linear Algebra

Question 1 was answered by most candidates, perhaps natually as it starts with a gentle
(though not bookwork) question on the basic topic of norms. In (a-i) some tried to use the
triangle inequality for norms–which in this case does not directly give the desired result. In
(b-ii) many stated only the trivial b = 0 case; the condition AT b = 0 is much more general.
In (iii) some used the QR factorisation of B, others the normal equation; both are valid
approaches. (c-ii) appeared to be difficult to many, while the key idea is quite simply to
connect it with the result (Courant-Fisher) stated in (i) and take special cases. (iii) appears
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to be connected to Courant-Fisher but it is not.

Question 2 was attempted by about half of the candidates. Some used the SVD to solve
(a); this isn’t the simplest approach and these attempts usually failed to specify the correct
H1, H2. The eigenvector sign choice was missed by many in (b-i), and a large number of
candidates failed to mention the presence of 2019 singular values at 0 in (b-ii). Part (c) is
a question inspired by randomised linear algebra; the key is to notice Q has an orthogonal
submatrix. (c-ii,iii) become straightforward once one realises this fact; otherwise, one would
need properties of orthogonal projections etc. Many used the subordinate inequality ‖(I −
QQT )A‖F ≤ ‖I −QQT ‖F ‖A‖F , but this is weak and insufficient for the problem. In fact it
is true that ‖(I −QQT )A‖F ≤ ‖I −QQT ‖2‖A‖F (or more generally ‖AB‖F ≤ ‖A‖2‖B‖F ,
a fact briefly discussed in lecture. In any case the problem can be solved without its
knowledge). Some tried to use the randomised SVD algorithm by Halko-Martinson-Tropp
and its theory, but that would not be successful.

Question 3 was also attempted by about half of the candidates. (a-c) were mostly answered
well, though finding an example in (b-ii) seemed difficult to some. In (c) it should be
noted that the final least-squares problem is upper Hessenberg, so can be solved efficiently
using Givens rotations. (d-ii) appeared to be challenging to many; some suggested the
randomised least-squares solver Blendenpik, but this isn’t a situation suitable for it. In (e)
some noted that GMRES stops making progress after the kth iteration (which is correct)
but then concluded immediately that k iterations gives the exact solution. This argument
(while eventually correct) needs further justification, e.g. that GMRES always finds the
solution for a nonsingular system Ax = b in a finite number of steps (which needs to be
proved if used).

C6.2: Continuous Optimisation

In the first question, the students struggled with the original (easy) pieces of bookwork they
had to derive - namely, the upper bound on the number of iterations. Also, the students
struggled with the calculation of the KKT point in part b); various incorrect values were
found but some good answers too.

The students coped much better with the second and third question. The downside was
that in Question 3, few students truly answered as expected in the bookwork derivations,
namely, where only one equality constraint was present; this problem structure had to be
used in the derivations in order to acquire the majority of the marks.
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C6.3 Approximation of Functions

This exam ran smoothly, with no problems of any kind. Question 3 appeared somewhat
harder than the others.

Question 1: 9 students did this, getting mostly 2.1 marks with a high score of 22 and a low
of 8. Most students got few points on the final part (3).

Question 2: 15 students did this, with marks ranging from 10, 13, 14 (twice) to 21 (twice),
22, 23, and 24.

Question 3: 8 students did this. The highest mark was 19, with marks at the low end of 3, 9
(twice), 10, and 11. Surprisingly many missed the factor of L in part (c) that appears when
you rescale a derivative from [−1, 1] to [−L,L], and few could see how to do the (pretty
elementary) estimate for part (d).

C6.4: Finite Element Methods for Partial Differential Equations

Q1: This question was attempted by all but one Part C student, but by only one OMMS
student. It revealed a good spread of abilities across those who attempted it. Q1(a)(i)
was answered correctly by every candidate. Some candidates claimed in Q1(a)(ii) that the
property was immediate, neglecting to observe that v ∈ Pk+1(K). Q1(a)(iii) was answered
correctly by every candidate. Q1(b)(i) was mostly answered well, with occasional slips in
the signs of the integration by parts formula for curl. A few candidates erroneously applied
the permutation rule for the scalar triple product directly to the volume integrand, rather
than to the term arising via integration by parts. Q1(b)(ii) was mostly answered well.
In Q1(b)(iii), a few candidates tried to modify the weak form they had already derived
rather than starting from the strong form of the problem. While this approach can work,
the handling of the boundary terms arising from integration by parts is delicate. A small
number of candidates did not realise that u ∈ H(curl,Ω) does not imply that ∇·u ∈ L2(Ω),
and failed to integrate by parts appropriately to shift the differential operator onto the
scalar-valued test function.

Q2: This question was very popular, with every candidate attempting it. Q2(a) was gener-
ally answered very well, as it was quite similar to problems seen on problem sheets. Q2(b)
served useful in revealing a candidate’s level of understanding. In Q2(c)(i), some candidates
proposed a nonsymmetric but correct A, instead of the (obvious) symmetric A that I had
in mind. These candidates were awarded full marks, but generally ran into difficulties in
handling the boundary conditions in Q2(c)(ii). Q2(c)(iii) was generally answered well, with
most candidates giving sharp constants with the correct parametric dependence on β. Full
marks were awarded for correct arguments leading to nonsharp bounds, so long as the de-
pendence on β (or not) was correct. In Q2(c)(iv), few candidates used the sharper

√
C/α

bound available for symmetric problems, with several candidates erroneously claiming that
the problem was not symmetric. The first part of Q2(c)(v) was generally answered well,
but the latter part of characterising the kernel was only answered correctly by a handful of
candidates.

Q3: This question was attempted by all but one OMMS student, but by only one Part C
student. Q3(a)(i) was generally answered poorly, with few candidates getting the boundary
integrals arising from integration by parts correct, and several including a dependence on the
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test function v in the strong statement of the boundary condition h(u, p, n) = 0. Q3(a)(ii)
was also answered poorly, with few candidates hitting the nail on the head: the boundary
condition depends on the value of the pressure, so taking a solution (u, p) and modifying it
to u, p + c) for c ∈ R no longer satisfies the boundary condition. Q3(a)(iii) was generally
answered well, but several candidates ran out of steam in the calculations and claimed the
result without showing it. Q3(a)(iv) was related to Q3(a)(i) and was marked in a manner
so as not to penalise candidates for the same mistake twice. Q3(b)(i) was mostly answered
well. Q3(b)(ii) was answered excellently, with most of the candidates who attempted it
giving very clear arguments. Q3(b)(iii) appears to have been much more challenging, with
only the best students answering it correctly. Several of these offered a beautiful argument
based on applying Babuška’s theorem.

C7.4: Introduction to Quantum Information

Question 1. It was the least popular question. Some students struggled with visualis-
ing mixed states in terms of Bloch vectors and failed to draw the required mixture of Z
eigenstates in (a) and the mixture of Pauli states in (b). Those who failed to sketch the
octahedron in part (b) had difficulties with completing part (e), which is related to (b).
Only few students attempted parts (e) and (f). Those who attempted part (f) showed no
difficulty in stepping through the quantum circuit. However, many students simply stated
that the T gate is needed for universality without backing it up with any arguments.

Question 2. It was by far the most popular, with nearly all students having it used as a
successfully attempted question. In general, it was very well answered, and students scored
well. Part (a) was bookwork; part (b) was done in a few different ways, but almost always
successfully; part (c) was where most students dropped a few marks, having calculated the
required identity successfully, but then incorrectly assuming that they could simply square
this to obtain the probability; part (d) was well answered, but many students simply listed
four probabilities without even mentioning how they related to the actual question asked;
part (e) was usually answered correctly, and many even mentioned how the maximally
mixed state attains the maximal probability for this test; part (f) was usually either an-
swered entirely correctly, or entirely incorrectly, with some students simply stating that the
probability obtained in part (d) was independent of the random number generator.

Question 3. The first three parts of this question (a, b and c) were, in general, well answered.
Students knew how to take partial traces, construct the Choi matrix, and how to check
positivity and complete positivity of linear maps. Some students did not realise that in
part (b) the reduced density operators must have the same spectrum. The last two parts (d
and e) — which required visualising the action of the depolarising map on the Bloch vector
— turned out to be the most challenging; students tried different approaches but only two
of them (out of 27) got it right.

C7.5: General Relativity I

Overall the exam was clearly difficult, with only a small number of exceptional students
able to complete two questions with only minor errors, and a larger number of students
than expected struggling with many aspects of the problems.

Question 1 was relatively popular, with a large majority of students attempting this ques-
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tion. The first part of the question and some portion of the middle of the question was
successfully completed by many students, but there were a significant number of errors of
understanding. It was fairly common, for example, to believe that a stationary observer
follows a geodesic. Many students were able to obtain an expression for the time difference
between the two observers, however in a large number of cases this expression included
constants of motion which could (and should) have been eliminated. There were several
ways to do this: the simplest was to use the stability of the orbit as in the lecture notes,
but this was missed by a majority of students. Consequently they were unable to finish the
question.

Question 2 was the most popular question, and part (a) was successfully completed by
most students. Mistakes in part (b) were more common, with some students unable to
correctly vary the action. Even fewer students succeeded in part (c): most students did
not begin by finding the conserved quantities given by the Lagrangian, and many students
mistakenly believed that the particle moves on a geodesic, despite deriving the force in part
(b). Many students were more successful with the tensor algebra bit of part (d), although
the majority of students did not realise that the energy-momentum tensor they had derived
was anisotropic, and since the spacetime is isotropic this requires some extra matter.

Question 3 was the least popular question. Part (a) was done successfully by the majority of
students, and a good number of students did well in part (b) too, although some struggled
with the tensor algebra. Many also struggled with the tensor algebra in part (c). In part
(d), no student gave a satisfactory argument for σ2 ≥ 0, although some did notice that such
an argument was needed. The interpretation of the result in part (e) was also mistaken in
a large number of solutions.

This was a difficult exam in a year that has been very challenging for many students.
Nevertheless I hoped for better results, especially with finding conserved quantities and
solving equations of motion from Lagrangians — a skill which is common to many courses
in theoretical physics.

C7.6: General Relativity II

Question 1: The first question was attempted by nearly all students. The tensor manip-
ulations in part a) did not prove difficult and also part b) was executed nearly flawlessly.
However, part c) was already more difficult and although most students scored a good num-
ber of points, only a few carried it out more or less correctly. Question d) i) was the most
difficult part and was not answered correctly by any student. Part ii), however, was again
easier with a few students scoring full marks and most students at least some.

Question 2: This question was the least popular with only a few students attempting it.
Part a) was carried out well by everyone and in part b) everyone showed the equivalence
of the gravitational perturbations under the gauge transformation, however, only half the
students showed that in general the new perturbation is not in wave gauge. Part c) and d)
proved difficult and no student produced a complete answer here.

Question 3: This question was again attempted by nearly all students. Part a) was
executed flawlessly by nearly everyone. Part b) was solved very well by most students and
various computational routes to the correct solution were presented. The last part was the
most difficult, and while most students gained a few points here, no one delivered a complete
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solution. In particular students struggled with keeping track of the coordinate ranges and
with constructing the maximal analytic extension.

C7.7: Random Matrix Theory

Question 1 was attempted by most of the candidates. Parts (a) and (b) were straightfor-
ward and in general answered well. Part (c) was answered correctly by most candidates,
but a few attempted to evaluate the moments using contour integration, which is difficult
and wasn’t necessary. Part (d) was also answered correctly by many candidates, but some
failed to justify which of the two solutions to the quadratic equation was the relevant one
in this problem.

Question 2 was attempted by the majority of the candidates. Part (a) was straightforward.
Many candidates did well on part (b), but some attempted a circuitous route. Parts (c)
and (d) were in general answered correctly. Part (e) was answered well by many, but
some candidates failed to justify which of the two solutions to the quadratic equation was
the relevant one in this problem. Many candidates found part (e) difficult. Only a few
realised that what was required was to invert the Stieltjes transform, and even fewer did
this correctly.

Question 3 was attempted by fewer candidates, but most of those who did attempt it
gained high marks. Part (a) was straightforward. Most found parts (b) and (c) straightfor-
ward too. Several candidates did part (d) well, but some failed to state Gaudin’s Lemma
or to apply it correctly. Many candidates found part (e) difficult. Only a few related
EN(α, β;A) correctly to the two-point correlation function, with many failing to apply the
necessary scaling with n.

C8.1: Stochastic Differential Equations

Question 1 was approximately as popular as Question 3, and less popular than Question 2.
The induction argument used in Part (a.ii) presented some difficulties, and most students
solved Part (a.iii) using Levy’s theorem. The primary difficulty in Part (b) was that the
process Xt is not a martingale, and therefore statements made using the Burkholder-Davis-
Gundy inequality (for example, in Part (b.iii)) must first be proven for the martingale Yt and
then deduced for Xt as a consequence. In Part (c) it was acceptable to simply state that the
process Yt is Gaussian, but this can also be deduced by the Gaussianity of Brownian motion
and the Dambis-Dubins-Schwarz theorem using the quadratic variation of Yt calculated in
Part (b). It then follows that Xt is a mean-zero Gaussian random variable with variance
calculated in Part (b), from which the claim follows.

Question 2 was the most popular question of the exam. Most students proved uniqueness in
Part (a) by identifying the solution explicitly, although some cited major theorems proven in
the course. Parts (b.i) and (b.ii) were universally solved using a random time change and the
Girsanov theorem. Part (b.iii) was more difficult, and required that by uniqueness in law the
two equations could be solved on a single probability space using an absolutely continuous
change of measure, where the absolute continuity is a consequence of the positivity of
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the stochastic exponential. Most students solved (c.i) using the Dambis-Dubins-Schwarz
theorem and properties of Brownian motion, and then argued in several different ways by
contradiction to prove (c.ii).

Question 3 was approximately as popular as Question 1, and less popular than Question
2. Most students solved Part (a.i) by applying Itô’s formula. Part (a.ii) presented more
difficulties, and the fastest solution was to take the expectation of the square of the stopped
process and argue using Fatou’s lemma and continuity. Part (a.iii) was a consequence of
the occupation formula. It is possible to prove Part (b) directly using only the occupation
formula. However, many students ended up reproving a more general statement from the
course to prove Part (b.ii) in particular. Part (c.i) is a consequence of Levy’s theorem.
Part (c.ii) is easier if a = 0. If a 6= 0, to construct a second strong solution some students
reflected the process at the first time it hit a.

C8.2: Stochastic Analysis and PDEs

All three questions were approximately equally popular. Most candidates managed to get
most or all points on part a of the three questions; similarly for part b most candidates made
substantial progress; a couple of candidates made very good progress on 1c but on 2c and
3c, very few candidates made substantial progress. A common mistake with 1b was to miss
to argue that these are all the eigenvalues. For 2c very few manged to exploit that by using
Q, the density of Z becomes easier to handle. Similarly, most candidates made progress on
3b(i) although fewer managed to realize that 3b(i) allows to substantially simplify 3b(ii).
Very few made any progress on 3c which could be done quickly by using Pa,b, the Markov
property, and continuity in b.

C8.3: Combinatorics

Q1: Most candidates completed the first two parts successfully. Part (c) was most commonly
attacked by using Local LYM to adjust the set system; not many candidates spotted the
quicker argument using random maximal chains. Part (e) was not completed successfully
by many candidates. A number of candidates assumed that A and B were antichains, which
was not in the question.

Q2: The first three parts were generally done well. The last part was harder, although there
were some ingenioous attempts. One or two candidates gave a construction and claimed it
was the ‘worst case’, rather than proving the upper bound.

Q3: Candidates mostly did well on part (a), which started with a couple of variants on
results from lectures. Part (b) was found more difficult. Some candidates used the Sauer-
Shelah theorem without stating it properly (as the instructions below the question re-
quested).

C8.4: Probabilistic Combinatorics

Question 1, which should be quite straightforward (though a little long), was surprisingly
poorly done. Sometimes the problem was trying to apply the first and second moment
methods to the wrong variable (In, rather than the number of increasing runs of a suitable
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length k; analagous to trying to calculate the expectation of the clique number rather than,
as in the notes, the expected number of cliques of a suitable size). Sometimes it was figuring
out when the expectation tends to 0/infinity. And sometimes just general confusion. There
were some good answers though, so the question generated a wide spread of marks.

Question 2 was the least popular. With hindsight, the start is rather difficult, since it
involves a slightly messy calculation. Still, most of the marks were available for a version
ignoring rounding, which is then pretty simple. The start of part (b) is also a bit tricky,
but the rest (simple rescaling) should be very easy. And part (c) is really going through
arguments in the notes (the exponential tail bounds on component sizes, proved via random
walks) with only minor changes (using the random walk to analyze the branching process
itself directly). A few candidates saw this, but not many. There were several decent answers
to part (d).

Question 3 was very disappointing. Although it was the most popular, it also had the lowest
average mark! The first part should a totally routine application of Janson, but almost all
attempts contained at least minor mistakes (e.g., giving incorrect formulae for the number
of possible 5-cycles, although this doesn’t affect the result). Very few candidates clearly
explained the possible intersection patterns (or the key fact, all that is needed, that the
intersection of two distinct 5-cycles contains more vertices than edges). (b)(i) was intended
to imitate the colouring argument from the final chapter of the course; some candidates
understood this, but not many (perhaps not everyone made it that far through the lecture
videos). Part (c) caused a lot of trouble, with no really good answers. The key is to
condition on the neighbourhood of v, regarding that as fixed, and then consider all paths of
the right length starting and ending in the neighbourhood of v, and simply to apply Janson
to this random variable. (Other methods work too!)

C8.6: Limit Theorems and Large Deviations in Probability

Question 1. 6 out of 10 candidates attempted this question which turns out the most
challenging question of the paper. Most of candidates know well the concepts of tightness,
the definition and some criterions for relative compactness, but the candidates find difficulty
to apply these criterions to concrete situations.

Question 2. 7 candidates attempted this question. Most candidates are able to prove the
triangle inequality for the metric on the probability measure space, and answered well about
the relation with the weak convergence. Part (b) even with the hint proves difficulty, and
no good solution is seen. While most candidates give good solutions to part (c).

Question 3. Again 7 candidates did this question about large deviation principle. Most
candidates did quite well about the application of Cramér’s LDP to evaluate some limit
probabilities associated with random walks. Also most candidates have no problem to
apply LDP for Brownian motion to obtain LDP for Wiener functionals. It turns out that
the candidates scored better than other questions.

Statistics Units

Reports on the following courses may be found in the Mathematics and Statistics examiners’
report.
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SC1 - Stochastic Models in Mathematical Genetics SC2 - Probability and Statistics for
Network Analysis SC4 - Advanced Topics in Statistical Machine Learning SC5 - Advanced
Simulation Methods SC7 - Bayes Methods SC9 - Interacting Particle Systems SC10- Algo-
rithmic Foundations of Learning

Computer Science

Reports on the following courses may be found in the Mathematics and Computer Science
examiners’ report.

Quantum Computer Science Categories, Proofs and Processes Computer Animation
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